Conjectures on strong psp
Back Ground
Define ψm
 to be the smallest strong pseudoprime to all
the first m prime bases.  …Denote by ψ’m  (resp. ψ’’m) the
smallest K2-( resp. C3-) spsp to all the first m prime bases…   In details
Conjectures on ψm  (9 ≤m
≤20)   
In [Zhang and Tang 2003, Zhang 2005, Zhang 2007],
we  reasonably made the following
Conjecture 1. 
[Zhang and Tang 2003]     We have   ψ9 =ψ10 =ψ11 = N9=N10=N11 =
3825 12305 65464 13051.
Conjecture 2. 
[Zhang 2005]  We have  ψ12 =ψ’12  <
 1024  <ψ’’12    , where
 ψ’12 = N12  = 399165290221 * 798330580441 = 3186 65857 83403 11511 67461 (24
digits)
was found in [Zhang 2001a].
Conjecture 3. 
[Zhang 2007]  We have   ψm =ψ’m <   ψ’’m  for all  m  ≥ 12, or more
precisely, we have
ψ12 = 
3186 65857 83403 11511 67461  (24 digits);
ψ13 = 1287836182261 * 2575672364521
= 33170 44064 67988 73859 61981 (25 digits) ; 
ψ14 =
54786377365501 * 109572754731001 = 600 30942 89670 10580 03125 96501 (28 digits)  ;    
ψ15 =
172157429516701 * 
344314859033401= 5927 63610 75595 57326 34463 30101 (29 digits)  ;
ψ16 =  ψ17 =
531099297693901 *  1062198595387801
= 56413 29280 21909 22101 40875 01701 (30
digits);
ψ18=ψ19 = 27778299663977101 *  55556599327954201 = 1543
26786 44434 20616 87767 76407 51301 (34 digits);
ψ20 > 1036.  Note
that Conjecture 3 covers Conjecture 2, which is the case m = 12.
See also   http://mathworld.wolfram.com/StrongPseudoprime.html;            
http://primes.utm.edu/glossary/page.php?sort=Pseudoprime
Updated:
(1)In 2014, Y. Jiang and  Y. Deng  [Math.
Comp.  83:290 (2014), 2915–292] proved  Conjecture 1. 
(2)In 2017, J. Sorenson and J. Webster  [Math. Comp. 
863:304 (2017), 985–1003.]  proved  Conjecture 3 on ψm for m=12 and 13. 
CHALLENGE: I offer a prize of $50 to the first person who disproves Conjecture 3 for  either m:  14 ≤m
≤20;
i.e., I offer a
prize of $50 to the first person who communicates to me a composite N <ψ’m  which is a strong pseudoprime to all the first m prime bases for either m: 
14 ≤m ≤19;
or a composite N < 1036  which is a strong pseudoprime to all the first
20  prime bases.  More clearly speaking, I will offer a prize of $50
to Alice who is the first person to
communicate to me  a composite N <ψ’14  which is a strong pseudoprime to all the first 14
prime bases;  I will also offer a prize of $50
to Bob who is the first person to
communicate to me  a composite N <ψ’15 which is a strong pseudoprime to all the first 15
prime bases; … , I will also offer a prize of $50 to Pete who is the first person to communicate to me  a composite N < 1036   which is a strong pseudoprime to all the first 20
prime bases.  (so, in total, $50 * (20-13)=
$350 is waiting for you)
Claimants must state the prime factorization of any numbers
submitted.
2020-12-06   2022-01-28