代表作主要参考文献 :    粗体字文献为与代表作关系最直接、最密切的文献

[Carmichael 1910]  R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1910),   232–238.

[Ramanujan 1915] S. Ramanujan, Highly composite numbers [Proc. London Math. Soc. (2) 14 (1915), 347-409], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, 78–128.

[ErdÖs 1944]  P. ErdÖs, On highly composite numbers, J. London Math. Soc. 19 (1944), 130–133.

[ErdÖs 1956]  P. ErdÖs, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206.

[Miller 1976] G. Miller, Riemann’s hypothesis and tests for primality, J. Comput. and System Sc. 13 (1976), 300-317.

[Williams 1977]  H. C.Williams, On numbers analogous to the Carmichael numbers, Canad. Math. Bull., 20:1  (1977), 133-143.  

[Baillie and Wagstaff  1980]  R. Baillie and Samuel S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391-1417.

[Monier 1980]  Louis Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoretical Computer Science 12 (1980), 97-108.

[PSW1980]  C. Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr., The pseudoprimes to 25·109, Math. Comp. , 35 (1980), 1003-1026.

[Rabin 1980] M. O. Rabin, Probabilistic algorithms for testing primality, J. Number Theory 12 (1980), 128-138.

[Knuth 1981] D. E. Knuth, The art of computer programming : Semi-numerical algorithms, Volume 2, 2nd ed.,  Addison Wesley, Reading Massachusetts, 1981.

[Hua 1982] L. K. Hua,  An introduction to number theory, Springer-Verlag, New York, 1982.

[Ireland and Rosen 1982] K. Ireland and M. Rosen, A classical introduction to modern number theory, GTM84, Springer-Verlag, New York, 1982.

[Jaeschke 1993] G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp., 61 (1993), 915-926.

[Pinch 1993] R. G. E. Pinch, The Carmichael numbers up to 1015, Math. Comp. 61 (1993), 381–389.

[Alford,  Granville and Pomerance 1994] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Annals of Math. 140 (1994), 703–722.

[Arnault 1995a] F. Arnault, Rabin-Miller primality test: Composite numbers which pass it, Math. Comp., Vol.64 (1995), pp.355-361.

[Arnault 1995b] F. Arnault, Constructing Carmichael numbers which are strong pseudoprimes to several bases, J. Symbolic Computation, Vol.20 (1995), pp.151-161.

[Arnault 1997] F. Arnault, The Rabin-Monier Theorem for Lucas Pseudoprimes, Math. Comp., 66 (1997), pp.869-881.

[Grantham 1998] J. Grantham, A Probable Prime Test with High Confidence, J. Number Theory, 72 (1998), 32-47.

[Dusart 1999] Pierre Dusart, The kth prime is greater than k(ln k +ln ln k -1) for k 2, Math. Comp. 68 (1999), 441-445.

[Rosen 2000] Kenneth H. Rosen, Elementary number theory and its applications, 4th ed., Addison Wesley Longman, 2000.

[Chen and Greene] Zhuo Chen and John Greene, Some comments on Baillie-PSW pseudoprimes, Fibonacci Quart. 41 (2003), 334–344.

[Guy 2004] Richard. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, New York, 2004.

[ Crandall and Pomerance 2005]  R. Crandall and C. Pomerance, Prime numbers, a computational perspective, 2nd ed., Springer-Verlag, New York, 2005.

[Grantham 2001] J. Grantham, Frobenius Pseudoprimes, Math. Comp., 70 (2001), 873-891.

[Pinch 2007]  Richard G. E. Pinch, The Carmichael numbers up to 1021, in Proceedings of Conference on Algorithmic Number Theory 2007 (edited by Anne-Maria Ernvall-Hyt¨onen, Matti Jutila, Juhani Karhum¨aki and Arto Lepist¨o), Turku Centre for Computer Science General Publication 46 (2007), 129–131.

[Echi 2007] Othman Echi, Williams numbers (English, with English and French summaries), C. R. Math. Acad. Sci. Soc. R. Can. 29 (2007), no. 2, 41–47.

2022-01-26
2022-05-08